ON VIRTUAL CROSSING NUMBER ESTIMATES FOR VIRTUAL LINKS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtual Crossing Number and the Arrow Polynomial

We introduce a new polynomial invariant of virtual knots and links and use this invariant to compute a lower bound on the virtual crossing number and the minimal surface genus. 1 The arrow polynomial We introduce the arrow polynomial, an invariant of oriented virtual knots and links that is equivalent to the simple extended bracket polnomial [6]. This invariant takes values in the ring Z[A,A, K...

متن کامل

Filamentations for Virtual Links

Abstract. In 2002, D. Hrencecin and L.H. Kauffman defined a filamentation invariant on oriented chord diagrams that may determine whether the corresponding flat virtual knot diagrams are non-trivial (see [2]). A virtual knot diagram is non-classical if its related flat virtual knot diagram is non-trivial. Hence filamentations can be used to detect non-classical virtual knots. We extend these fi...

متن کامل

Virtual Knots and Links

This paper is an introduction to the subject of virtual knot theory, combined with a discussion of some specific new theorems about virtual knots. The new results are as follows: We prove, using a 3-dimensional topology approach that if a connected sum of two virtual knots K1 and K2 is trivial, then so are both K1 and K2. We establish an algorithm, using Haken-Matveev technique, for recognizing...

متن کامل

Triple Crossing Number of Knots and Links

A triple crossing is a crossing in a projection of a knot or link that has three strands of the knot passing straight through it. A triple crossing projection is a projection such that all of the crossings are triple crossings. We prove that every knot and link has a triple crossing projection and then investigate c3(K), which is the minimum number of triple crossings in a projection of K. We o...

متن کامل

On Polynomial Invariants of Virtual Links

The VA-polynomial proposed in the author’s earlier paper (Acta Appl. Math. 72 (2002), 295–309) for virtual knots and links is considered in this paper. One goal here is to refine the definition of this polynomial to the case of the ring Z in place of the field Q. Moreover, the approach in the paper mentioned makes it possible to recognize “long virtual knots” obtained from equivalent virtual kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2009

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s021821650900718x